Generation of FcRH5xCD28 Bispecific Antibodies Synergizing with **T-Cell Engagers for Enhanced Multiple Myeloma Treatment**

Sara Majocchi^{*}, Margaux Legrand, Coline Burnet-Merlin, Maud Charreton Galby, Cécile Raymond, Pauline Malinge, Valery Moine, Giovanni Magistrelli, Franck Gueneau, Nicolas Fischer, Limin Shang, Krzysztof Masternak, Walter G. Ferlin Light Chain Bioscience – Novimmune SA | Plan-Les-Ouates – Geneva | Switzerland

Objective

To develop FcRH5-targeted CD28 bispecific antibodies (bsAbs) that provide selective co-stimulation of T cells, thus enhancing T cell engager (TCE) efficacy and overcoming tumor resistance mechanisms in multiple myeloma (MM) patients

FcRH5 is a highly prevalent and enriched MM marker

FCRH5 has an extracellular domain (ECD) consisting of 9 Ig-like domains (D1 to D9)

Importantly, MM patients display high levels of soluble FcRH5 (comprising ECD D1-8)

Soluble FcRH5 measured by ELISA

Disease	Number of samples	Median (ng/ml)	Range (ng/ml)		
Normal	193	188	<30-600		
CLL	46	958	71-6300		
MM	43	481	<30-11000		

Preferential binding to membrane-bound FcRH5 via D9 is crucial to avoid efficacy loss from the sink effect but challenging due to high similarity with other FcRH5 ECD domains and other FcRH family members

INTRAMOLECULAR IDENTITY FcRH5										INTERMO			
		D1	D2	D3	D4	D5	D6	D7	D8	D9			
FcRH5	D1		27%	27%	26%	27%	28%	29%	27%	25%		D1	
	D2	27%		26%	40%	50%	43%		24%	25%		D2	
	D3	27%	26%		31%	30%	32%		32%	31%		D3	
	D4	26%	40%	31%		62%	58%	46%	47%	49%	ю	D4	
	D5	27%	50%	30%	62%		70%	50%	50%	54%	RH	D5	
	D6	28%	43%	32%	58%	70%		54%	52%	54%	Fcl	D6	
	D7	29%	/	/	46%	50%	54%		80%	75%		D7	
	D8	27%	24%	32%	47%	50%	52%	80%		77%		D8	
	D9	25%	25%	31%	49%	54%	54%	75%	77%	\sum		D9	

Poster presented at the ASH Annual Meeting 2024

San Diego, USA

FcRH5xCD28 bsAbs enhance the activity of several TCEs Alnuctamab Analog

- mechanism to TCEs in MM patients

*Corresponding author: sara.majocchi@lightchainbio.com

Synergy with Teclistamab observed in presence of sFcRH5

FcRH5xCD28 bsAb mitigates TCE activity loss induced by sBCMA

Status and next steps

Identified anti-FcRH5 arms with high specificity to FcRH5 domain 9

FCRH5-candidate arms paired with our anti-CD28 arm, showed robust synergy in killing FcRH5+ MM cells when combined with TCEs targeting BCMA or GPRC5D

Demonstrated activity of FcRH5xCD28 bsAbs in the presence of soluble FcRH5

• Addition of FcRH5xCD28 bsAbs partially restored the activity of BCMA-targeting TCEs reduced by soluble BCMA, potentially overcoming a known resistance

FCRH5xCD28 bsAb lead candidate has been selected, preclinical development and clonal cell line construction strategically set to begin in early 2025